3 research outputs found

    Data-driven Linear Quadratic Tracking based Temperature Control of a Big Area Additive Manufacturing System

    Full text link
    Designing efficient closed-loop control algorithms is a key issue in Additive Manufacturing (AM), as various aspects of the AM process require continuous monitoring and regulation, with temperature being a particularly significant factor. Here we study closed-loop control of a state space temperature model with a focus on both model-based and data-driven methods. We demonstrate these approaches using a simulator of the temperature evolution in the extruder of a Big Area Additive Manufacturing system (BAAM). We perform an in-depth comparison of the performance of these methods using the simulator. We find that we can learn an effective controller using solely simulated process data. Our approach achieves parity in performance compared to model-based controllers and so lessens the need for estimating a large number of parameters of the intricate and complicated process model. We believe this result is an important step towards autonomous intelligent manufacturing

    Optimal age-specific vaccination control for COVID-19

    Full text link
    The outbreak of a novel coronavirus causing severe acute respiratory syndrome in December 2019 has escalated into a worldwide pandemic. In this work, we propose a compartmental model to describe the dynamics of transmission of infection and use it to obtain the optimal vaccination control. The model accounts for the various stages of the vaccination and the optimisation is focused on minimising the infections to protect the population and relieve the healthcare system. As a case study we selected the Republic of Ireland. We use data provided by Ireland's COVID-19 Data-Hub and simulate the evolution of the pandemic with and without the vaccination in place for two different scenarios, one representative of a national lockdown situation and the other indicating looser restrictions in place. One of the main findings of our work is that the optimal approach would involve a vaccination programme where the older population is vaccinated in larger numbers earlier while simultaneously part of the younger population also gets vaccinated to lower the risk of transmission between groups

    Optimal age-specific vaccination control for COVID-19 : An Irish case study

    No full text
    The outbreak of a novel coronavirus causing severe acute respiratory syndrome in December 2019 has escalated into a worldwide pandemic. In this work, we propose a compartmental model to describe the dynamics of transmission of infection and use it to obtain the optimal vaccination control. The model accounts for the various stages of the vaccination, and the optimisation is focused on minimising the infections to protect the population and relieve the healthcare system. As a case study, we selected the Republic of Ireland. We use data provided by Ireland's COVID-19 Data-Hub and simulate the evolution of the pandemic with and without the vaccination in place for two different scenarios, one representative of a national lockdown situation and the other indicating looser restrictions in place. One of the main findings of our work is that the optimal approach would involve a vaccination programme where the older population is vaccinated in larger numbers earlier while simultaneously part of the younger population also gets vaccinated to lower the risk of transmission between groups. We compare our simulated results with those of the vaccination policy taken by the Irish government to explore the advantages of our optimisation method. Our comparison suggests that a similar reduction in cases may have been possible even with a reduced set of vaccinations available for use
    corecore